COST-1

#user define skewness function

us_sk<-function(x){

n<-length(x)

mean_x<-mean(x)

sd_x<-sd(x)

skew<-sum((x - mean_x)^3) / ( n * sd_x^3)

return(skew)

}


#user define kurtosis function


us_kt<-function(x){

n<-length(x)

mean_x<-mean(x)

sd_x<-sd(x)

kurt<-sum((x - mean_x)^4) / (n * sd_x^4) - 3

return(kurt)

}


#user define mean function


us_mean<-function(x)

{

s = sum(x)

l = length(x)

r = (s/l)

return(r)

}


#user define mode function


us_mode<-function(x)

{

ux<-unique(x)

mode_value<-ux[which.max(tabulate(match(x,ux)))]

return(mode_value)

}

#user define mean function


us_mean<-function(x)

{

s = sum(x)

l = length(x)

r = (s/l)

return(r)

}


#user define standard deviations

us_sd<-function(x)

{

n<-length(x)

mean_x<-mean(x)

sd_x<-sqrt(sum (( x - mean_x)^2) / (n - 1))

return(sd_x)

}


#user define variance functio

variance<-function(x)

{

n<-length(x)

mean_x<-mean(x)

vari_val<-sum((x - mean_x)^2) / (n - 1)

return(vari_val)

}


var(b)

variance(b)

Comments

Popular posts from this blog

python(BI)

Prac_8(AMP)

LSA10